Goto Chapter: Top 1 2 3 4 5 6 7 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

3 Complexes morphisms
 3.1 Categories and filters
 3.2 Creating chain and cochain morphisms
 3.3 Attributes
 3.4 Properties
 3.5 Operations

3 Complexes morphisms

3.1 Categories and filters

3.1-1 IsChainOrCochainMorphism
‣ IsChainOrCochainMorphism( phi )( filter )
‣ IsBoundedBelowChainOrCochainMorphism( phi )( filter )
‣ IsBoundedAboveChainOrCochainMorphism( phi )( filter )
‣ IsBoundedChainOrCochainMorphism( phi )( filter )
‣ IsChainMorphism( phi )( filter )
‣ IsBoundedBelowChainMorphism( phi )( filter )
‣ IsBoundedAboveChainMorphism( phi )( filter )
‣ IsBoundedChainMorphism( phi )( filter )
‣ IsCochainMorphism( phi )( filter )
‣ IsBoundedBelowCochainMorphism( phi )( filter )
‣ IsBoundedAboveCochainMorphism( phi )( filter )
‣ IsBoundedCochainMorphism( phi )( filter )

Returns: true or false

Gap-categories for chain and cochains morphisms.

3.2 Creating chain and cochain morphisms

3.2-1 ChainMorphism
‣ ChainMorphism( C, D, l )( operation )

Returns: a chain morphism

The input is two chain complexes \(C,D\) and a \(\mathbb{Z}\)-function \(l\). The output is the chain morphism \(\phi:C\rightarrow D\) defined by \(\phi_i :=l[i]\).

3.2-2 ChainMorphism
‣ ChainMorphism( C, D, l, k )( operation )

Returns: a chain morphism

The input is two chain complexes \(C,D\), dense list \(l\) and an integer \(k\). The output is the chain morphism \(\phi:C\rightarrow D\) such that \(\phi_{k}=l[1]\), \(\phi_{k+1}=l[2]\), etc.

3.2-3 ChainMorphism
‣ ChainMorphism( c, m, d, n, l, k )( operation )

Returns: a chain morphism

The output is the chain morphism \(\phi:C\rightarrow D\), where \(d^C_m = c[ 1 ], d^C_{m+1} =c[ 2 ],\) etc. \(d^D_n = d[ 1 ], d^D_{n+1} =d[ 2 ],\) etc. and \(\phi_{k}=l[1]\), \(\phi_{k+1}=l[2]\), etc.

3.2-4 CochainMorphism
‣ CochainMorphism( C, D, l )( operation )

Returns: a cochain morphism

The input is two cochain complexes \(C,D\) and a \(\mathbb{Z}\)-function \(l\). The output is the cochain morphism \(\phi:C\rightarrow D\) defined by \(\phi_i :=l[i]\).

3.2-5 CochainMorphism
‣ CochainMorphism( C, D, l, k )( operation )

Returns: a chain morphism

The input is two cochain complexes \(C,D\), dense list \(l\) and an integer \(k\). The output is the cochain morphism \(\phi:C\rightarrow D\) such that \(\phi^{k}=l[1]\), \(\phi^{k+1}=l[2]\), etc.

3.2-6 CochainMorphism
‣ CochainMorphism( c, m, d, n, l, k )( operation )

Returns: a cochain morphism

The output is the cochain morphism \(\phi:C\rightarrow D\), where \(C^m = c[ 1 ], C^{m+1} =c[ 2 ],\) etc. \(D^n = d[ 1 ], D^{n+1} =d[ 2 ],\) etc. and \(\phi^{k}=l[1]\), \(\phi^{k+1}=l[2]\), etc.

3.2-7 StalkChainMorphism
‣ StalkChainMorphism( f, n )( operation )
‣ StalkCochainMorphism( f, n )( operation )

Returns: a (co)chain morphism

The input is a morphism \(f:a\rightarrow b\) in a category \(A\). The output is chain (resp. cochain) morphism \(f_{\bullet}\in\mathrm{Ch}_\bullet(A)(f^{\bullet}\in\mathrm{Ch}^\bullet(A))\) where \(f^{\bullet}_n=f( f_{\bullet}^n=f)\) and \(f^{\bullet}_i=0(f_{\bullet}^i=0)\) whenever \(i\neq n\).

3.2-8 HomologyFunctorialAt
‣ HomologyFunctorialAt( phi, n )( operation )
‣ CohomologyFunctorialAt( phi, n )( operation )

Returns: a morphism

The input is a (co)chain complex morphism \(\phi:C\to D\) and an integer \(n\). The outout is the associated morphism between the (co)homology objects of \(C\) resp. \(D\) at index \(n\).

3.3 Attributes

3.3-1 Morphisms
‣ Morphisms( phi )( attribute )

Returns: \(\mathbb{Z}\)-function

The output is morphisms of the chain or cochain morphism as a \(\mathbb{Z}\)-function.

3.3-2 AsChainMorphism
‣ AsChainMorphism( phi )( attribute )

Returns: a chain morphism

The input is a cochain morphism \(\phi\) and the output is the associated chain morphism.

3.3-3 AsCochainMorphism
‣ AsCochainMorphism( phi )( attribute )

Returns: a cochain morphism

The input is a chain morphism \(\phi\) and the output is the associated cochain morphism.

3.3-4 MappingCone
‣ MappingCone( phi )( attribute )

Returns: complex

The input a chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is its mapping cone chain (resp. cochain) complex \(\mathrm{Cone}(\phi )\).

3.3-5 NaturalInjectionInMappingCone
‣ NaturalInjectionInMappingCone( phi )( attribute )

Returns: chain (resp. cochain) morphism

The input a chain (resp. cochain) morphism \(\phi:C\rightarrow D\). The output is the natural injection \(i:D\rightarrow \mathrm{Cone}(\phi )\).

3.3-6 NaturalProjectionFromMappingCone
‣ NaturalProjectionFromMappingCone( phi )( attribute )

Returns: chain (resp. cochain) morphism

The input a chain ( resp. cochain) morphism \(\phi:C\rightarrow D\). The output is the natural projection \(\pi:\mathrm{Cone}(\phi ) \rightarrow C[u]\) where \(u=-1\) if \(\phi\) is chain morphism and \(u=1\) if \(\phi\) is cochain morphism.

3.3-7 MappingCylinder
‣ MappingCylinder( phi )( attribute )

Returns: complex

The input a chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is its mapping cylinder chain (resp. cochain) complex

3.3-8 NaturalInjectionOfSourceInMappingCylinder
‣ NaturalInjectionOfSourceInMappingCylinder( phi )( attribute )

Returns: morphism

The input a chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is the natural embedding \(C\rightarrow \mathrm{Cyl}(\phi )\). I.e., the composition

3.3-9 NaturalInjectionOfRangeInMappingCylinder
‣ NaturalInjectionOfRangeInMappingCylinder( phi )( attribute )

Returns: morphism

The input a chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is the natural embedding \(D \rightarrow \mathrm{Cyl}(\phi )\). I.e., the composition This morphism can be proven to be quasi-isomorphism. See Weibel, page 21.

3.3-10 NaturalMorphismFromMappingCylinderInRange
‣ NaturalMorphismFromMappingCylinderInRange( phi )( attribute )

Returns: morphism

The input a chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is the natural morphism \(\mathrm{Cyl}(\phi )\rightarrow D\). It can be shown that \(D\) and \(\mathrm{Cyl}(\phi )\) are homotopy equivalent. This homotopy equivalence is given by the two morphisms

\[\mathrm{NaturalInjectionOfRangeInMappingCylinder}(\phi):D \rightarrow \mathrm{Cyl}(\phi )\]

and

\[\mathrm{NaturalMorphismFromMappingCylinderInRange}(\phi):\mathrm{Cyl}(\phi ) \rightarrow D.\]

See Weibel, page 21.

3.3-11 NaturalMorphismFromMappingCylinderInMappingCone
‣ NaturalMorphismFromMappingCylinderInMappingCone( phi )( attribute )

Returns: morphism

The input a chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is the natural morphism \(\mathrm{Cyl}(\phi )\rightarrow \mathrm{Cone}(\phi )\). It can be shown that

\[0 \rightarrow C\xrightarrow[]{\alpha} \mathrm{Cyl}(\phi ) \xrightarrow[]{\beta} \mathrm{Cone}(\phi )\rightarrow 0\]

where

\[\alpha := \mathrm{NaturalInjectionOfSourceInMappingCylinder}(\phi)\]

and

\[\beta := \mathrm{NaturalMorphismFromMappingCylinderInMappingCone}(\phi),\]

is a short exact sequence. See Weibel, page 21.

3.3-12 HomotopyMorphisms
‣ HomotopyMorphisms( phi )( attribute )

Returns: A ZFunction

The input is a null-homotopic chain (resp. cochain) morphism \(\phi:C \rightarrow D\). The output is the homotopy morphisms given as a \(\mathbb{Z}\)-function \((h_i:C_i \rightarrow D_{i+1})\) ( resp. \((h_i:C_i \rightarrow D_{i-1})\) ). Note that this method can be called only if it is added to the category, see \(\texttt{AddHomotopyMorphisms}\).

3.4 Properties

3.4-1 IsQuasiIsomorphism
‣ IsQuasiIsomorphism( phi )( property )

Returns: true or false

The input a chain ( resp. cochain) morphism \(\phi:C\rightarrow D\). The output is true if \(\phi\) is quasi-isomorphism and false otherwise. If \(\phi\) is not bounded an error is raised.

3.4-2 IsNullHomotopic
‣ IsNullHomotopic( phi )( property )

Returns: true or false

The input is a chain or cochain morphism \(\phi\) and output is true if \(\phi\) is null-homotopic and false otherwise.

3.5 Operations

3.5-1 SetUpperBound
‣ SetUpperBound( phi, n )( operation )

Returns: a side effect

The command sets an upper bound to the morphism \(\phi\). An upper bound of \(\phi\) is an integer \(u\) with \(\phi_{i}= 0\) for \(i>n\). The integer \(u\) will be called active upper bound of \(\phi\). If \(\phi\) already has an active upper bound, say \(u^\prime\), then \(u^\prime\) will be replaced by \(u\) only if \(u^\prime>u\).

3.5-2 SetLowerBound
‣ SetLowerBound( phi, n )( operation )

Returns: a side effect

The command sets an lower bound to the morphism \(\phi\). A lower bound of \(\phi\) is an integer \(l\) with \(\phi_{i}= 0\) for \(l>i\). The integer \(l\) will be called active lower bound of \(\phi\). If \(\phi\) already has an active lower bound, say \(l^\prime\), then \(l^\prime\) will be replaced by \(l\) only if \(l>l^\prime\).

3.5-3 HasActiveUpperBound
‣ HasActiveUpperBound( phi )( operation )

Returns: true or false

The input is chain or cochain morphism \(\phi\). The output is true if an upper bound has been set to \(\phi\) and false otherwise.

3.5-4 HasActiveLowerBound
‣ HasActiveLowerBound( phi )( operation )

Returns: true or false

The input is chain or cochain morphism \(\phi\). The output is true if a lower bound has been set to \(\phi\) and false otherwise.

3.5-5 ActiveUpperBound
‣ ActiveUpperBound( phi )( operation )

Returns: an integer

The input is chain or cochain morphism. The output is its active upper bound if such has been set to \(\phi\). Otherwise we get error.

3.5-6 ActiveLowerBound
‣ ActiveLowerBound( phi )( operation )

Returns: an integer

The input is chain or cochain morphism. The output is its active lower bound if such has been set to \(\phi\). Otherwise we get error.

3.5-7 MorphismAt
‣ MorphismAt( phi, n )( operation )

Returns: a morphism

The input is chain (resp. cochain) morphism and an integer \(n\). The output is the component of \(\phi\) in index \(n\), i.e., \(\phi_n\)(resp. \(\phi^n\)).

3.5-8 CyclesFunctorialAt
‣ CyclesFunctorialAt( phi, n )( operation )

Returns: a morphism

The input is chain (resp. cochain) morphism and an integer \(n\). The output is the morphism between the kernels in index \(n\).

3.5-9 \[\]
\[\]( phi, n )( operation )

Returns: an integer

The input is chain (resp. cochain) morphism and an integer \(n\). The output is the component of \(\phi\) in index \(n\), i.e., \(\phi_n\)(resp. \(\phi^n\)).

3.5-10 IsQuasiIsomorphism
‣ IsQuasiIsomorphism( phi, n )( operation )

Returns: an integer

The input is chain (resp. cochain) morphism and an integer \(n\). The output is the component of \(\phi\) in index \(n\), i.e., \(\phi_n\)(resp. \(\phi^n\)).

3.5-11 MorphismsSupport
‣ MorphismsSupport( phi, m, n )( operation )

The command gives back the list of indices between \(m\) and \(n\) where the complex morphism is not zero.

3.5-12 Display
‣ Display( phi, m, n )( operation )

The command displays the components of the morphism between \(m\) and \(n\).

3.5-13 IsWellDefined
‣ IsWellDefined( true, or, false )( operation )

The command checks if the morphism is well defined between \(m\) and \(n\).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 Ind

generated by GAPDoc2HTML